EUV Processes in Tin-oxo Cages—A Computational Chemistry Perspective

Jonathan H. Ma1,2, D. Prendergast3, A. Neureuther1,4 and P. Naulleau1

1CXRO, Material Science Division, LBL
2Department of Physics, UC Berkeley
3The Molecular Foundry, LBL
4Department of EECS, UC Berkeley
Metal oxide systems and oxo clusters

EUV Atomic Cross sections
(100 Mb = 1 Å²)

B. Cardineau, Frontiers of Nanoscience, 11, 327 (2018)

K Sakai et al., JVSTB, 36, 06J504 (2018)
Prototypical cage

180 mJ/cm²

50 nm HP

Y. Zhang et al., *JM3*, 16(2), 23510, (2017)

34 mJ/cm²

J Haitjema et al., *JM3*, 16(3), 1 (2017)

A good platform of computational material engineering
Quantum Chemistry Calculations

• Density functional theory
 – The ‘work horse’
 – Proven—accurate for non-degenerate molecules
 – PBE0/def2-TZVP//def2-SVP

• Q-Chem
 – Commercially available
 – Optimized for performance
Electron driven chemistry

- Photoionization
- Electron attachment
- Impact ionization
Terminology

Ligand

Belt-R

Side-R
Electron driven chemistry

Photoionization

Impact ionization

Electron attachment
Sn-C cleavage driven chemistry

2+ → 3+ + e⁻

2.8 eV

0.60 eV

2+ → 3+ + e⁻

2.8 eV

+
The story of two R groups

1.23 eV

0.60 eV

Cleaving off belt-R

Cleaving off side-R
The story of two R groups

2+ 1.23 eV

3+ 0.60 eV

3+ 1.78 eV

3+ 1.67 eV

2.16 eV

0 eV

1.23 eV

1.67 eV

0.60 eV

Cleaving off belt-R +

Cleaving off side-R +
First or second order?

Photoionization

Electron attachment

Impact ionization
Electron driven chemistry

- Photoionization
- Impact ionization
- Electron attachment
Electron attachment

Lowest Unoccupied Molecular Orbital

Electrostatic potential (V)
Sn-C cleavage driven chemistry

Ligand

R-groups

4.42 eV

3.35 eV

1.13 eV

2.8 eV

0.06 eV

+ + –

+ –

+ + –

+ + –

Berkeley UNIVERSITY OF CALIFORNIA

14
The story of two R-groups

An excited state is needed

- 0.74 eV

- 0.06 eV
 Energy in Sn-C stretching modes at room temperature: 0.18 eV

Cleaving off side-R

Cleaving off belt-R
Excited states

- 0 eV
- 0.74 eV
- 0.87 eV
- 1.25 eV

16
First or second order?
A tale of two mechanisms
Process selectivity and reaction order

• Ionization
 – Extra energy is needed for cleavage
 – Side methyl groups are more unstable.
 – Order is incident energy dependent
 – **Happens closer to the EUV absorption site**

• Electron attachment
 – Side methyl groups: extra excitation needed
 – Belt methyl groups: could be spontaneous
 – **Could happen further away**
Into the future

• Devise strategies to engineer process selectivity

• Explore methods for bond breaking process suitable for large molecules to model relative reaction speeds
Thank you

Center for Design-Enabled Nanofabrication (C-DEN)