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Towards EUV
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DUV Absorption by PAG

Acid

Acid Amplification + 

Deprotection

Extra steps involving electrons to be understood and play with

EUV Absorption by Polymer

Photoelectrons
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Condensed phase photoemission

http://physics.bu.edu/~ksmith/index_files/Page934.htm
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http://physics.bu.edu/~ksmith/index_files/Page934.htm


Condensed phase photoemission results
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Underlayer

Underlayer as an electron source

Photoresist

EUV photons

Secondary e-

(scattered) 

More chemistry

What electrons are we feeding into the resist?
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Underlayer

Understand what goes into the resist

EUV photons
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Underlayer photoemission
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The life of an electron
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EUV photons

Primary e-
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(scattered) 

Resists/Underlayers

Other condensed system

Energy Spectrum of 

these electrons?

What do the resist 

materials see?

How to infer what we want from what we get?



Trajectory Model

11 We simulate the life of a collection of electrons



Internal spectra vs photoemission
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Cross-section

They are not proportional



Effective MPF
Å The initial direction of the electron 

affects the outcome of the scattering

Å Such ócorrelationôgives electrons 
ñextra momentumò, increasing their 
chance of escape

Å Trajectories are like polymers ð
scattering step Ą monomer

Å Correlation is well studied in polymers
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Effective (Kuhn) MFP
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Orange: (Kuhn-IMFP)-1

Blue: Internal/Emission



Rooms for improvement

ÅThe rudimentary model has a few problems
ïA distribution is reduced into an average

ï ὧέί—ȟ ὧέί—ȟ is not really accurate

ÅSolution:
ïA Monte Carlo trajectory simulation with no energy 

loss

ï Ὑ ‗ÅÆÆὔ
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Fitting <R2>1/2 to  ‗ὔȾ
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Results using effective MFP ‗
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Weôre able to recover the internal electron energy spectra from photoemission data
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