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Relationship between photon shot noise and secondary 

electron blur in line edge roughness formation 
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Photons alone can transfer information.  
The energy does not have to be transferred by photons. 

Role of photons:  
         Transfer of information and energy for imaging 

Conversion 
process 

Quantum efficiency enhancement  
    (Increase in reduction potential of acid generator, acid amplification, PSCAR etc.) 

Sensitivity enhancement 
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*a: dissolution factor, 0.68 for ESR1 
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Sensitization mechanism of EUV resists 
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The electron with thermal energy can sensitize acid generators.  

Activation energy for dissociative 
electron attachment : ~0 

(1) Absorption 

(2) Deceleration 

Eth < E < hn-Ie 

(3) Deceleration 

25 meV < E < Eth 

Eth: Threshold energy for 
electronic excitation 

Ie: Ionization energy 

Simulation processes 

(4) Electron diffusion and reaction 

E=25 meV 
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The electron with thermal energy can sensitize acid generators.  

Activation energy for dissociative 
electron attachment : ~0 

Eth: Threshold energy for 
electronic excitation 

Ie: Ionization energy 

The acid generator molecules nearest to 

the absorption point were intentionally 

decomposed in accordance with the 

quantum efficiency. 

Catalytic chain reaction 

LER and stochastic 

defect generation 



Comparison between real and ideal case 
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Fig. Dependence of LER of 11 nm half-pitch line-and-space 

patterns on exposure dose. The optical contrast was 1.0. The 

effective reaction radius for deprotection was 0.1 nm.  
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Fig. Dependence of LER on sensitivity. The optical contrast was 

1.0. The effective reaction radius for deprotection was 0.1 nm.  
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1. Effects of photon shot noise in chemically amplified 

EUV resists with photodecomposable quenchers, 

assuming an ideal case. 

 

2. Relationship between photon shot noise and 

secondary electron blur 

Objective 



Acid generator and 
photodecomposable 
quencher molecules 
nearest to the absorption 
point were intentionally 
decomposed in 
accordance with the 
quantum efficiency. 
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Ideal case 

Real case 
Acid generator and photodecomposable 
quencher molecules are  decomposed after 
thermalization of secondary electrons. 
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Fig. Representative calculation results of 11 nm half-pitch line-and-space patterns for 

the quantum efficiencies of 2 and 20. The total sensitizer concentration was 0.2 nm-3. 
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Fig. The relationships between sensitivity and LER obtained for the 

quantum efficiencies of 2, 10, and 20 with the total sensitizer 

concentration of 0.2 nm-3.  
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Comparison between photodecomposable and conventional quenchers 

Fig. Dependence of LER on the sensitivity. The numerical values next to “Q” denote the 
quantum efficiencies. The quencher concentration, PEB time, and dissolution point were 
optimized to maximize the chemical gradient at the intended boundary for each parameter set. 
The dashed lines (except for the straight horizontal lines) were calculated, assuming chemically 
amplified resists with acid generators and conventional quenchers.  

Total sensitizer concentration 0.3 nm-3 Total sensitizer concentration 0.4 nm-3 

AG + PDQ 0.3 nm-3 

0.3 nm-3 AG + Conv.Q 

AG + PDQ 0.4 nm-3 

0.4 nm-3 AG + Conv.Q 

The shot noise limit is determined by the total sensitizer concentration, 
independently of the type of sensitizers (AG or PDQ).  

PDQ is equivalent to AG in the role as an information receiver.  



AG or PDQ molecules 
at the distance of rs 
from last sensitization 
(or ionization) point 
were intentionally 
decomposed in 
accordance with the 
quantum efficiency. 
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Real case 
Acid generator and photodecomposable 
quencher molecules are  decomposed after 
thermalization of secondary electrons. 
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Fig. Representative calculation results of 11-nm half-pitch line-and-space patterns for 
sensitization distances of 1 and 3 nm. Dotted lines represent the photon intensity distribution 
normalized for comparison. Solid and dashed lines were calculated with quantum 
efficiencies of 2 and 10, respectively. Solid and dashed lines correspond to exposure doses 
of 36 and 7.2 mJ cm-2, respectively. Total sensitizer concentration is 0.2 nm-3.  
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Fig. Dependence of LER on the sensitivity calculated at a sensitization distance of 0, 1, 2, and 

3 nm. Numerical values next to “Q” denote the quantum efficiencies. Total sensitizer 

concentration is 0.2 nm-3. Dotted lines with open circles represent the photon shot noise limit 

of LER for a total sensitizer concentration of 0.2 nm-3 with a sensitization distance of 0 nm.  



1. The role of acid generators is to receive the information carried by 

photons and to fix it as an acid distribution in the resist film. From the 

viewpoint of the shot noise limit, the photodecomposable quencher was 

equivalent to the acid generator in the role as an information receiver. 

2. With the increase of sensitization distance, the shot noise limit of LER 

was significantly increased. At a sensitization distance of 1 nm, the 

increase in the quantum efficiency to 20 becomes meaningless. At the 

sensitization distance of 3 nm, the lowest LER for the quantum 

efficiency of 10 becomes achievable at the same sensitivity with the 

quantum efficiency of 2. Therefore, the effectiveness of quantum 

efficiency enhancement depends on the sensitization distance.  

3. Upon the application of the quantum efficiency enhancement to the 

design of chemically amplified resists, the acceptable sensitization 

distance is significantly short. Consequently, it is important to assess the 

sensitization distance when a significant enhancement of quantum 

efficiency is attempted.  
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