Considerations for resist outgas testing with EUV and hydrogen at NIST

Shannon Hill, Robert Berg, Charles Tarrio, Thomas Lucatorto
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

Resist Outgas TWG
February 21, 2016
San Jose, California, USA
Existing outgas testing facility at NIST

Potential for outgas testing in hydrogen at NIST

Future plans

• New commitments to NASA/NOAA
• Continued support of EUVL
Existing outgas testing facility

- Synchrotron
- Mirror
- EUV
- Filter
- Witness sample
- Wafer
- Cryopump

Broadband EUV on WS
In-band 13.5 nm on wafer
Plan to increase power on wafer

- Remove relay mirror
Plan to increase power on wafer

- Remove relay mirror
- WS intercepts central 40% of beam

Broad-band EUV on WS and wafer

WS intensity: (10-20) mW/mm²
Wafer power: ~40 mW
Plan to add hydrogen flow

Contaminating vapors diffuse through hydrogen atmosphere from wafer to witness sample.
Hydrogen pressure and flow rate

How much hydrogen?
pressure 1 mbar (750 mTorr, 100 Pa)
flow rate enough to remove outgassing of H$_2$O

Minimum pumping speed to keep up with H$_2$O outgassing

\[\dot{V}_{\text{pumpMin}} = \frac{Q_{\text{water}}}{P_{\text{H2O}}} = \frac{(6 \times 10^{-7} \text{ mbar L s}^{-1})}{(1.0 \times 10^{-7} \text{ mbar})} = 6 \text{ L s}^{-1} \]

Corresponding flow rate

\[Q_{\text{H2min}} = P \dot{V}_{\text{pumpMin}} = 6 \text{ mbar L s}^{-1} = 360 \text{ sccm} \]
Gas flow vs diffusion

Q: How much time is needed for outgas species to diffuse to the witness sample?
A: 0.03 s

Q: How much time is needed for the H$_2$ flow to sweep out the volume L^3?
A: 0.8 s

$$t_D \equiv \frac{L^2}{D} = 0.03 \text{ s}$$

$t_{\text{flow}} \approx \left(\frac{L}{L_{\text{chamber}}} \right) \frac{V_{\text{chamber}}}{V_{\text{pump}}} \approx \left(\frac{0.042 \text{ m}}{0.5 \text{ m}} \right) \left(\frac{56 \text{ L}}{6 \text{ L s}^{-1}} \right) = 0.8 \text{ s} \gg t_D$

Outgas molecules will reach WS before being swept away
Protecting the NIST synchrotron (SURF III) from hydrogen

Risks

• A large, one-time dose of H\textsubscript{2} could permanently degrade SURF ion pumps
• Ion pumps are integral to the storage ring so cannot be repaired/replaced

Consequences

• Damaged ion pumps = new synchrotron!

SURF must be protected against a burst of hydrogen.
Plan to protect the synchrotron

Stop the flow if chamber pressure exceeds 1 mbar.
Plan to protect the synchrotron

Add a second filter that sees no H₂.
Plan to protect the synchrotron

Shut the fast valve (<10 ms) if pressure in the beamline rises.
Plan to protect the synchrotron

Stop the synchrotron’s ion pumps if pressure in the beamline rises.
Plan to protect the synchrotron

Significant capital investment for H₂ upgrade
Summary: proposed H$_2$ outgas testing facility

Hydrogen atmosphere
- Max pressure: 1 mbar
- Flow rate: 360 sccm

Average witness sample intensity
- (10-20) mW/mm2

Average power on wafer
- ~40 mW

Pulse structure of EUV
- Rep rate: 114 MHz
- Pulse duration 1 ns
- Duty factor 10 %

Broad-band EUV on
- witness sample
- AND wafer

![EUV power density graph](graph.png)
Future plans

Substantial support from NOAA/NASA to study degradation of solar-observing satellite instruments

Requires commitment to one of following options by April 2016

Current plan: modify outgas testing beamline for NOAA program
- Standard outgas tests may require extra time
- Upgrade to H2 configuration would require greater support and time

Optional plan: perform NOAA work on new beamline
- Continued availability of standard resist-outgas testing
- Easier upgrade of outgas beamline to H2 configuration
- Substantially increases cost/time for NOAA work