NIST outgas testing update

Robert Berg, Shannon Hill, Charles Tarrio, and Thomas Lucatorto

National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

IEUVI Resist technical working group
22 February 2015
Modifications to improve site-to-site comparability

1) Use a filter with more EUV transmission.
2) Stabilize the chamber at a higher temperature.
3) Decrease the pumping speed.

<table>
<thead>
<tr>
<th></th>
<th>old</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUV filter</td>
<td>Zr</td>
<td>Si</td>
</tr>
<tr>
<td>temperature</td>
<td>22 °C</td>
<td>30 °C</td>
</tr>
<tr>
<td>pumping speed</td>
<td>281 L/s</td>
<td>135 L/s</td>
</tr>
</tbody>
</table>

- E_0 not affected by different EUV filter and higher temperature.
- (E_0 for CSR-019 was revised from 7.77 to 5.52 mJ/cm2 after re-examination of data for resist thickness vs. E.)

- New conditions caused 4 times more CG for all resists except CSR-042.
- (CG for CSR-019 was decreased from 1.77 to 1.22 in proportion to revised E_0.)
CLR not achieved for two of the five EIDEC model resists

Conditions to attain saturation still not entirely clear – R&D ongoing
Changing the EUV filter

- Silicon transmits more EUV than zirconium in 13 – 50 nm.
- Copper mesh keeps the silicon membrane cool.

These data were taken at $T = 22 \, ^\circ \text{C}$, 281 L/s.

The silicon filter transmits more EUV, and it may have a longer life.

Changing the filter (but not T or PS) increased CG.
Correlating RGA data with carbon thickness

Overall correlation with RGA data seems OK for both filters.
EUV filter

temperature

pumping speed

CSR-003

Zr
22 °C
281 L/s

Set FWHM
2.05 mm

2.0495 mm

@264 mA

CSR-012

Si
22 °C
281 L/s

Set FWHM
2.07 mm

2.0655 mm

@270 mA

CSR-019

Si
30 °C (with baffle)
135 L/s

Set FWHM
2.065 mm

2.0655 mm

@270 mA

CSR-042

Set FWHM
2.072 mm

2.07225 mm

@274 mA

CSR-044

Set FWHM
2.08 mm

2.075 mm

@274 mA