

Resist Outgas Testing IEUVI TWG

17 October 2010

Resist outgas qualification is tied to NXE system performance

System productivity **Optics reflectivity** Resist contamination specification (dR/R) **Conversion factor Qualification method**

- System level performance requires that the mirrors maintain high reflectivity
- Resist outgas, if not managed, could reduce mirror reflectivity
- Outgas requirements have been set to maintain the system performance over > 5 years of expected use
- NXE specification has been correlated to mirror reflectivity
 - ≤ 2% cleanable (carbon);
 ≤ 0.16% non-cleanable
- Contamination growth has been correlated to dR/R

There are key system specifications for resist outgas testing that must be met

- Grease free scanning wafer stage to accommodate a 300 mm wafer and exposure of a full wafer surface
- The system must be equipped with e-beam exposing the witness sample (WS)
 - Cannot get to high enough WS intensity with photons
 - Photons or electrons can be used for the wafer exposure though electrons are more efficient
- The wafer stage and witness sample holder positioned so that primary electrons from either surface will not reach the other
- Cleaning of sample with H radicals is needed and can be part of the
 - tester (best for productivity) or stand-alone
- Ultra clean vacuum required, which is more important than ultra high vacuum
 - Load locks are important to achieve this
- Pumping speed: ≤ 265 l/s

Component	Pressure
	in mbar
N_2	< 1.0·10 ⁻⁷
O_2	< 5.0·10 ⁻⁸
H ₂ O	< 1.0·10 ⁻⁷
C _x H _Y (45-100)	< 1.0·10 ⁻¹⁰
C _x H _Y (101-200)	< 5.0·10 ⁻¹¹
p _{total}	< 1.5·10 ⁻⁷

Qualification procedure has four main steps

Besides the resist outgas tester and cleaner the following is needed:

Resist exposures: Coat and development facilities for 300mm

Wafers with resist thicknesses <100nms

Quantification cleanable contamination: ellipsometry

Quantification non-cleanable contamination: XPS

Note: ToF-SIMS is not needed as XPS is sensitive enough

Metrology specifications have been defined

Ellipsometry:

- Measurements on 1" witness samples and 12" wafers
- 2D spectral ellipsometry (preferred wavelength range 300-900nm)
- 150 µm spot size
- 150 μm raster on a 5 x 5 mm² area
- Detection limit/accuracy 0.1nm/±0.1nm

XPS

- Measurements on 1" witness samples
- Accuracy / detection limit 0.1 % at
- Monochromatic Al K_{α} radiation source
- Spot size 125 μm x 125 μm or smaller

Summary

- To retain scanner optics reflectivity, resist outgas must be managed
- Resist outgas testing with witness sample is needed to confirm compliance with specs
 - Tester needs to be ultra-clean
 - Electrons or electrons + photons are needed for exposure
 - Ellipsometry + XPS is needed for contamination thickness and material content measurements
- Witness sample resist outgas test capability is needed now to support resist optimization for use for early production EUVL

Backup

Resist outgassing from photons and electrons is similar

Fingerprints show good resemblance

Spie 7636-69

E-gun grown contamination has been correlated to EUVL grown contamination

Resists tested with 2 procedures:
EUV and e-beam
Different resists tested to obtain full range

