RLS optimization

K_{LUP} to understand trends

Mieke Goethals, Roel Gronheid
IMEC, Leuven, Belgium

IEUVI Resist Technical working group meeting, 2nd Oct 2008, Lake Tahoe
Resist screening with interference lithography at PSI
LER vs sensitivity trend

30nm L/S resolution
EUV resist screening with interference litho and on the ASML EUV ADT (NA=0.25, $\sigma=0.5$)

Similar trend LER vs sensitivity on the ADT
EUVL resist challenges - RLS

Sensitivity
- Acid Diffusion
 - Length = Pixel Size
- Shot Noise Statistics
 - = Photons/Pixel
- Resolution
- Line Width
- Roughness

Acid Diffusion Length

\[
K_{LUP}(A, \Phi) = \sqrt{\frac{E_s}{h \nu d}} \cdot EL \cdot LWR \cdot \frac{(L_d)^{3/2}}{p}
\]

Use this approach for:
- Quantitative understanding of variation of effect of resist composition parameters
- Comparison of Resists: Alternative Platforms monitor the performance of resists
Physical meaning of K_{LUP}

$$K_{\text{LUP}} = \sqrt{\frac{E_s}{h \nu \cdot d} \cdot EL \cdot LWR \cdot \frac{(L_d)^{3/2}}{p}}$$

- The K_{LUP} formula can be re-arranged to

$$LWR = \frac{K_{\text{LUP}}}{p \cdot \sqrt{\frac{h \nu \cdot d}{E_s \cdot L_d^3}}}$$

- Lower K_{LUP} is better

- Factor of two reduction in K_{LUP} means
 - Resist prints same features at same dose with but with half LWR
 - OR
 - Resist prints same features with similar LWR, but at sizing dose divided by 4

- Shot noise – deprotection statistics
- Interdependent parameters!
Outline

• Introduction
 – What is K_{LUP}?

• Effect of Film Thickness

• Effect of PAG Loading

• Polymer-bound PAG Resists

• Conclusion
Effect of film thickness

\[K_{LUP} \cdot \sqrt{A} \cdot \Phi = \text{Constant} \]

Therefore,

\[K_{LUP} \propto \frac{1}{\sqrt{d}} \]

- \(K_{LUP} \) behavior versus thickness as expected
 - \(K_{LUP} \) scales with \(\frac{1}{\sqrt{d}} \)

- Important consequence:
 Any future reduction in resist thickness will have to be compensated by a similar increase in effective absorbance (effective = leading to acid creation) in order to decrease \(K_{LUP} \)
Effect of film thickness on Sizing Dose and LWR

- LWR increases drastically upon reducing resist thickness
- Dose to size decreases with reducing resist thickness

Interference litho exposures
• Increase in LWR with decreasing film thickness is consistently found
• Increase is more drastic than expected just from shot noise scaling when based on incident dose
• Shot noise scaling is applicable when absorbed dose is considered (as done in K_{LUP})
• Need to increase absorbance for EUV resists
 • Increase F content
Outline

• Introduction
 – What is K_{LUP}?

• Effect of Film Thickness

• Effect of PAG Loading

• Polymer-bound PAG Resists

• Conclusion
PAG Loading – Motivation

- Increasing PAG loading for KrF/ArF increases Absorbance (A)
 - Make more efficient use of photons
 - Decrease Sizing Dose
 - Higher Acid density \Rightarrow Less Acid shot noise resulting in better LWR
- But too high loading leads to loss of pattern profile (in 193nm)
- Increasing PAG loading for EUV does not increase Absorbance (A),...
- ..., but does increase the acid quantum yield (Φ)
 - Make more efficient use of photons
 - Decrease Sizing Dose
 - Higher Acid density \Rightarrow Less Acid shot noise resulting in better LWR
PAG loading: A way to improve K_{LUP}

- Series of conventional model resists
- K_{LUP} decreases with increasing PAG loading due to larger acid generation efficiency

<table>
<thead>
<tr>
<th>PAG loading</th>
<th>p (nm)</th>
<th>λ (nm)</th>
<th>E_s (mJ/cm2)</th>
<th>d (nm)</th>
<th>EL (nm)</th>
<th>LWR (nm)</th>
<th>L_d (nm)</th>
<th>K_{LUP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>90</td>
<td>13.4</td>
<td>13.3</td>
<td>80</td>
<td>0.187</td>
<td>13.6</td>
<td>19.1</td>
<td>0.79</td>
</tr>
<tr>
<td>50%</td>
<td>90</td>
<td>13.4</td>
<td>13.9</td>
<td>80</td>
<td>0.242</td>
<td>10.6</td>
<td>16.0</td>
<td>0.62</td>
</tr>
<tr>
<td>100%</td>
<td>90</td>
<td>13.4</td>
<td>15.8</td>
<td>80</td>
<td>0.252</td>
<td>8.5</td>
<td>14.8</td>
<td>0.50</td>
</tr>
<tr>
<td>150%</td>
<td>90</td>
<td>13.4</td>
<td>18.5</td>
<td>80</td>
<td>0.233</td>
<td>6.8</td>
<td>14.6</td>
<td>0.39</td>
</tr>
</tbody>
</table>
• Resist absorbance at EUV is governed by the chemical composition of the matrix, not by PAG (as in KrF and ArF)
• In EUV, increasing PAG loading reduces LWR, but does not cause sloped profiles
X-sections as function of PAG loading

- Profiles deteriorate at increasing PAG loading by top-rounding, sloped profiles and top-loss. All is caused by increased absorbance.
Outline

• Introduction
 – What is K_{LUP}?

• Effect of Film Thickness

• Effect of PAG Loading

• Polymer-bound PAG Resists

• Conclusion
Why polymer-bound PAGs?

- Suppress phase separation between PAG and polymer
 - Would allow for increase of PAG concentration
 » Lower **Sizing Dose**
 » Lower **LWR**

- Improve PAG uniformity
 » Lower **LWR**

- Suppress acid diffusion
 - Better **resolution** capabilities
Assessment of Polymer-Bound PAG resists

- K_{LUP} has been determined for three EUV resists using EUV interference lithography
 - Polymer-bound PAG + blended PAG
 - Anion-bound PAG platform
 - Cation-bound PAG platform

- Apart from the PAG the three formulations are similar: same backbone and same acid labile group

- Lithographic performance of three resists are compared to EUV reference resist MET-2D
Assessment of Polymer-Bound PAG resists

<table>
<thead>
<tr>
<th></th>
<th>p (nm)</th>
<th>λ (nm)</th>
<th>ν (s⁻¹)</th>
<th>E_s (mJ/cm²)</th>
<th>d (nm)</th>
<th>EL (nm)</th>
<th>LWR (nm)</th>
<th>L_d (nm)</th>
<th>K_{LUP}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET-2D</td>
<td>100</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>22.7</td>
<td>90</td>
<td>0.12</td>
<td>8.1</td>
<td>32</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>24.6</td>
<td>90</td>
<td>0.11</td>
<td>8.7</td>
<td>32</td>
<td>0.83</td>
</tr>
<tr>
<td>Blend A</td>
<td>100</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>22.8</td>
<td>80</td>
<td>0.17</td>
<td>6.3</td>
<td>26</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>25.0</td>
<td>80</td>
<td>0.16</td>
<td>6.1</td>
<td>26</td>
<td>0.66</td>
</tr>
<tr>
<td>EUV-B</td>
<td>100</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>41.1</td>
<td>80</td>
<td>0.21</td>
<td>4.9</td>
<td>17</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>45.2</td>
<td>80</td>
<td>0.23</td>
<td>4.4</td>
<td>17</td>
<td>0.49</td>
</tr>
<tr>
<td>EUV-C</td>
<td>100</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>37.7</td>
<td>80</td>
<td>0.23</td>
<td>4.6</td>
<td>13</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>13.4</td>
<td>2.24E+16</td>
<td>42.0</td>
<td>80</td>
<td>0.24</td>
<td>4.8</td>
<td>13</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Observations:
- LWR of novel resist concepts is considerably improved
- Lower L_d gives larger EL as a bonus
- The novel materials B and C show substantially larger sizing doses
- Yet, novel materials exhibit significantly lower K_{LUP} values
• Polymer-bound PAG resists show very promising results
 - EUV-C exhibits lowest K_{LUP} so far
 - Blend-A and EUV-B show intermediate results
Conclusions

- Scaling of resist film thickness <80nm can only be maintained if resist absorbance can be sufficiently increased
 - For EUV this may become problematic

- For EUV resists PAG loading should be maximized (while avoiding phase separation)
 - No negative impact observed on profile, exposure latitude or resolution
 - Larger acid concentration improves LWR

- Polymer-bound PAG resists offer an attractive path for achieving high PAG loading
 - These materials show best K_{LUP} performance thus far

- K_{LUP} is a useful metric for understanding resist performance and comparing different formulations

- RLS improvement by
 - Increasing polymer absorbance
 - Increasing Quantum yield
 - Post processing to reduce LWR