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Acid generation mechanism
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The difference is critical for resist pattern formation, process
simulation and material design.
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Significant impact on sensitivity, resolution and LER

T. Kozawa et al., J. Appl. Phys. 99 (2006) 054509.
T. Kozawa et al., J. Vac. Sci. Technol. B23 (2005) 2716.




LER formation mechanism

Initial acid distribution
Aerial image including reflection from substrate and flare
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Basic strategy for resist development for 22 nm node

Chemical amplification is still needed

To achieve high sensitivity
To reduce the statistical effect by acid diffusion

Initial acid distribution
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The reduction of catalytic chain length
The enhancement of proton production
The improvement of initial image quality of counteranions

Quality of anion distribution and quantity of proton



T. Kozawa, H. Oizumi,

_ I. Nishiyama, S. Tagawa,
Experimental JVSTB24(2006)L27.

EUV from Super-ALIS

Poly(4-hydroxystyrene) film with l 1 l l l l l
10 wt% TPS-tf and 5 wt% Thickness: 1.5 um
Coumarin6 (C6) acid sensitive dye

*The exposure dose was evaluated with a diode detector (SXUV100 Mo/Si/SiC, IRD)
calibrated at PTB Radiometry Laboratory at BESSY Il. The estimated exposure dose
(mJ cm-2) per unit beam current (As) was 0.60 == 0.03 mJ cm2 A1 s,

References
Experimental procedure: H. Yamamoto et al., Jpn. J. Appl. Phys., Part 1 43, 3971 (2004).
Flood exposure system: H. Oizumi et al., J. Photopolym. Sci. Technol. 19, 507 (2006).



Acid yield in a model system of chemically amplified EUV resist
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Fig. Absorption spectra of PHS films with 10 wt% TPS-tf and 5 wt% C6 after EUV
exposure. The exposure doses are 0, 0.6, 1.2, 1.8, 2.4, 3.0, 3.6,4.2,4.8,5.4,6.0 and 7.2
mJ cm-2 from the bottom to the upper line at the wavelength of 533 nm.



The number of acid molecules generated with 100 eV absorbed energy (G-value)
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Fig. Relation between the absorbed energy per unit area and the number of acid
molecules generated by EUV exposure per unit area.



Interaction of electron with material -spatial distribution-
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Interaction of EUV photon with material -spatial distribution-

EUV photon
«—— photon
< electron :
electron 2 Intensity of EUV (1)
N Thermalization Ol
_lonization § _ — =—al
Thermalization ~, € o7
- _ + - -
e -~ +/ve / Ion.lza’Flon v | B
lonization ™, | I?X(:t{tatlon Absorption coefficient (o)
\onlza ion PHS : 3.8 um-
e-
Resist Thermalization

The number of secondary
electrons can be estimated
using W-value.




Average energy required to produce an ion pair (W-value)

How many secondary electrons are generated?

40 L ' y Ll LI | ' d ! Ll Ll L Ll LI |
2p
R electron
o |

100 (eV)
G-value

lonization energy (Ar):
15.759, 15.937 eV

MeV

W-value =

_ﬂ'ﬁ :0.'-.\ '."

W Value (eV)
W
o

® Photon W-value p h OtO N

—{— Electron W-value
Calculated photon W-value

100 1000
Photon Energy (eV)

20

Fig. 3. Photon W-value for Ar as a function of photon energy.
The solid circles show the present result, and the open
squares are the data of Combecher for electrons. The solid
curve represents the photon W-values calculated by the
model here. The arrow indicates the 2p ionization threshold.
[N. Saito, I. H. Suzuki, Radiat. Phys. Chem. 60 (2001) 291.]

Insensitive to quality and energy
for radiations above keV

K-edge
Carbon: 284 eV
Oxygen: 547 eV

/W—value INn PHS N
22.2 eV (75 keV EB)

T. Kozawa et al., J. Vac. Sci.
Technol. B24 (2006) 3055.
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Generation efficiency of counteranion per ionization
Decomposition of acid generator through the reaction with low-energy electron
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Electron dynamics in chemically amplified resists
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Fig. The distribution change of electrons calculated with the parameters: the concentration of acid
generator, C = 10 wt%, the initial separation distance, r, = 4 nm, the dielectric constant, ¢ = 4, the
effective reaction radius, R = 2.4 nm. Dt/r,? is a non-dimensional parameter and represents time. The
vertical axis represents the probability density of electrons per unit distance. The probability is
spherically integrated. The time step (ADt/ry?) between each line is 0.005 and the maximum time
(Dt/ry?) is 0.085.
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Probability density of Anion (/nm)

Generation probability and distribution of counter anion
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Fig. The evolution of counter anion distribution calculated with the parameters: the concentration
of acid generator, C = 10 wt%, the initial separation distance, r, = 4 nm, the dielectric constant, &=
4, the effective reaction radius, R = 2.4 nm. Dt/r,? is a non-dimensional parameter and represents
time. The vertical axis represents the probability density of electrons per unit distance. The
probability is spherically integrated. The time step (ADt/r,?) between each line is 0.005 and the
maximum time (Dt/r,?) is 0.085.



Acid generation efficiency (ionization path)
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Acid generation through direct excitation and polymer sensitization

Dill’s formulation (direct excitation) Excitation path
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Polymer sensitization (energy or electron transfer from excited state of polymer)
Static quenching (Perrin model)
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Acid yield per 100 eV absorbed energy (excitation path)

G_. L = . C AG Ioading\Swt% 10 wit%
acid (excitation) excitation =~ AG lonization 93 90

Excitation 7 10




Polymer structure dependence of acid yield

JIAP46(2007)L142
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Acid generator Relative acid yield

TPS-tf EUV (%) EB (%)
O D PHS 100.0 100.0
O PBIS 40.4 45.4
PCIS 29.5 38.2
Acid sensitive dye
Coumarin 6 PIS 14.2
- PAMS 7.9 12.6
@ PaMS 2.0 7.1
PtBS 6.5
PS 5.3 5.5




PHS vs. PS, PAMS
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Resist design of EUV resists (1)

For the resist design, the most critical point is which molecule absorbs incident radiation.

Photoresist

The basic design strategy of photoresists is to minimize the absorption of
polymer and adjust that of acid generator to an appropriate value.

Tremendous efforts have been devoted to the reduction of polymer
absorption during the development of KrF, ArF and F, excimer laser
lithography without exception.

Acid yield in photoresists  Pol ion Acid yield in EUV resists

EUV resist

Acid generators are sensitized mainly by not the incident radiation but
secondary electrons.

The absorption coefficient of polymers against EUV is more important for acid
generation than that of acid generators. The absorption coefficient of polymers
should be adjusted to an appropriate value.



Resist design of EUV resists (2)

The number of
secondary electrons
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Deprotonation efficiency

(Acidity of polymer radical cation)

Polymers play an important role in acid generation in EUV resists.

Because of high energy of EUV photon, any polymers and compounds are candidate.
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