Summary of European Workshop on Resist Limitations

February 27th, 2005; San Jose, CA

Sematech Resist Limitations Workshop

W. D. Domke
Resist Limitations Workshop - General

- 24 participants from Europe (MEDEA ExCITe and More Moore), Asia (ASET, Osaka Univ.) and USA (Sematech)
- 3 general roadmap presentations by IMEC, ASML and Clariant
 - ITRS update 2004 and it’s consequences for resist development
 - Tool roadmap for 193i and EUV
 - Resist roadmaps 193i and beyond
- 14 short presentations on physical, chemical and processing limitations of state-of-the-art resists were given by the participants
- Prioritization of Issues was done (mainly under the perspective of the european EUV community)
- Top 3 ranked Issues were discussed in detail in following breakout sessions
Prioritization of Issues

Items were collected after each presentation and clustered at the end of the presentation session; Voting: each meeting attendee was allowed to allocate 3 points.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Votes</th>
<th>In Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Edge Roughness</td>
<td>19</td>
<td>- Shot noise & LER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- LER transfer during etch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- LER – sensitivity trade-off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Contact hole – LER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Molecular size distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Metrology</td>
</tr>
<tr>
<td>Chemical Amplification</td>
<td>17</td>
<td>- LER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Diffusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Secondary electron blur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Resolution vs. Diffusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Acid nanospace control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- CAR limit @ 35nm?</td>
</tr>
<tr>
<td>Defectivity & Outgassing</td>
<td>17</td>
<td>- Defects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Surface defects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Interactions on interfaces resist-fluid-optics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Outgassing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Leaching (“Immersion Outgassing”)</td>
</tr>
<tr>
<td>Processing</td>
<td>9</td>
<td>- Process complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Resist development</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pattern collapse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Thin resists</td>
</tr>
<tr>
<td>Optical properties of resists</td>
<td>4</td>
<td>- CD control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Absorbance of resists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Refractive index</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- High-RI fluids and light propagation</td>
</tr>
</tbody>
</table>
Resist Limitations Workshop – Breakout Sessions

- Breakout Sessions on top issues were held to clarify:
 - is the problem fully understood (contributors, mechanisms, today’s vs. future limits, intrinsic?)
 - for which wavelengths and which node(s) will this issue become a problem?
 - what is the outlook for solving the problem (process trade-offs, workarounds)?
 - research effort & who could play a major role in this research effort (consortia, universities, suppliers, IC manufacturers, …)
Some general conclusions

- Issues that require „standardization methodology“ can best be driven by consortia (e.g. Sematech)
- Issues that include decent „chemistry knowledge“ can best be pursued between supplier & institutes
- Standardized methodology should asap be available for resist supplier to pre-check materials
- Top #3 Resist Limitations were:
 - LER – Shot Noise – Sensitivity
 - Diffusion - Resolution
 - Resist Outgassing
- Issues will be addressed at International SMT Workshop and follow-up MEDEA workshops
Statements on “Chemical Amplification Resists”

- Non-local exposure at EUV; “secondary electron blur” (TNO)
- EUV shot noise prevents 40nm resolution (Freescale)
- “some modulation” down to 30nm HP already seen in EUV resist (AZ)
- no reasonable resist profiles obtained so far, how to deal with “flare”? (IFX)
- polymer side reactions (radical formation, crosslinking, scissioning, ..) which will take place due to high photon energy (IFX)
- “diffusion trade-off”: “short” supports resolution, “long” smoothens LER (Freescale)
- “Confinement effects”, e.g. non-linear behaviour of water uptake, diffusion vs. resist thickness (AZ)
- Experimental evidence that acid diffusion viz. image blur causes a significant decrease in EL (Philips)
- The acid diffusion length must scale down with the pitch, just as λ/NA (Philips)
- “nanospace reactions” (acid diffusion between exposure and PEB) add to image blur effect (Osaka Uni)
Statements on “Chemical Amplification Resists”

- resolution limited to 30-35nm half pitch due to acid diffusion; compare: 35 nm HP (7.1 nm LER, 11 mJ/cm²) vs. 17.5 nm HP (2.5 nm LER, 50 – 100 mJ/cm²) (IMEC)
- Confinement: LER and outgassing is related to resist components (size, aggregates) and to the imaging mechanism (CARs, chain scission etc) (IMEL)
- high resist absorbance at EUV (2-3/um; no significant progress)
- Key question: how to optimize Sensitivity, LER, Diffusion, Resolution simultaneously
- Fundamental limits LER: molecule size (0.7nm, 3 sigma: 2.1 nm)
- Not wavelength specific problem, but EUV / EB appears worse than 193nm; 193nm is worse than 248nm
- Problem seen for 45nm HP and below
PMMA (non-CA resist) imaging at PSI

Best resolution obtained with optical lithography so far

Resist Performance Screening by EUV Interference Lithography: **Resolution no longer limited by tool, but by resist** (3rd Int EUV Symp.; Miyazaki)

- 17.5nm L/S
- 15nm L/S
- 35nm contacts
- 40nm in CA-resist

ExCITE T406 – Review meeting – Feb. 22-23, 2005
General statements on roadmap issues

- ITRS completely “red” for 45 nm and below
- EUV inserted at 32nm HP ($k_1 = 0.59!$), extended for several generations
- 193i possibly down to 32 nm HP
- Resist suppliers need significantly more and regular tool time
- 35 nm HP feasible; intrinsic limits of CA resists seen at 20-25 nm
- Specific EUV sensitivity vs. LWR is central problem. Experimental evidence that ultra-low LER and low sizing dose cannot be achieved simultaneously
- Exposure tools available that run into CAR limit: EUVL (e.g. interference printer, MET); 193 immersion (e.g. hyper-NA interference printer); E-beam lithography
These are the Roadblocks

- secondary electron blur is not as big as diffusion but might add up to 8nm

- shot noise limit for EUV photons limits low-sensitivity to ~ 4-5 mJ/cm²

- LER limit by molecular contributions is > 2nm

- Resolution Limitation by Diffusion ~ 20 – 25 nm

- outgassing in EUV is high and might prevent low-Mw resists
Workshop Summary

• ITRS resist roadmap completely “red” for <45nm, i.e. no fundamental understanding of issues and no solutions visible yet to achieve targets on time (e.g. < 1.6nm CD control)

• The intrinsic trade-off between sensitivity, LER and resolution is the fundamental problem to be solved

• Fundamental and new limits are visible and require critical review of targets; e.g. molecule size of 2.1 nm or “non-linear” thin film behaviour

• Metrology needs to be developed and w/w standardized (e.g. LER, outgassing, leaching); early agreement on targets required to support resist development

• Follow-up WS’s (Sematech, 2/05; Medea, fall 05)