IBM Research Semiconductor Technology

IBM EUV Pellicle Update

Dario L. Goldfarb

IBM T.J.Watson Research Center, Yorktown Heights, NY 10598, USA

IEUVI Pellicle TWG – February 21, 2016 – San Jose, CA

EUV Pellicle Program (IBM)

Goal: enable through-pellicle ArF inspection of EUV masks (>125W EUV Source Power)

Demonstrated generalized fabrication method of full field silicon nitride EUV pellicle (BACUS 2015)

- 🖵 SiNx, 19.6nm
- □ EUV T%= 87.3% (single pass)*
- □ ArF semi-transparent
- Tensile, no wrinkles
- Tensility loss upon heating
- Limited EUV power compatibility

*EUV T = 90% (single pass, full field) achieved, requires tensility adjustment

Learning vehicle to understand

- Through-pellicle EUV mask inspection feasibility
- Thermophysical behavior & impact on imaging

Use current learning and capabilities to incorporate

Heat dissipation layer with EUV/193 transmission

(WORK IN PROGRESS...)

Through-Pellicle EUV Mask Defect Inspection

Actual Test Vehicle

- •20nm SiNx pellicle passed initial 193nm inspection tests –pellicle durability
- -optical properties impact
- -transmittance / reflectance impact
- •Standard thru-pellicle 193nm inspection had good defect performance
- •Pellicle properties at 193nm had little impact on inspection performance

EUV Pellicle Emissivity (ε)

V.A. Golyk, M. Krüger and M.Kardar, "Heat radiation from long cylindrical objects", *Phys.Rev.E* 85, 046603 (2012)

EUV Pellicle Emissivity (ε)

193nm laser beamline and exposure chamber

SiNx 20nm pellicle marginally compatible with 80W EUV source under steady state conditions

$$H_{fail} = \varepsilon.\sigma_{SB} (T_m^4 - T_0^4) \rightarrow extract \varepsilon$$

ε (SiNx, 20nm) = 0.0035

Emissivity	SiN
50nm film (@100°C)	0.008

Sungwon Kwon, Samsung IEUVL 2015

EUV Pellicle (SiNx, 20nm) @ 60W EUV Source Power

EUV Pellicle Wrinkling

RESULTS (20nm SiNx pellicle @ 60W)

- Small pellicle deformation, (Δ L/L) = 0.44%
- Transient compressive stress present during scanning

Pellicle wrinkling not expected to impact imaging

Parameter	θ max = 2 π A/ λ (mrad)
Specification	300
20nm SiNx @60W	√ 148
40nm pSi @250W	✓ 95
40nm pSi @250W [1]	√ 134

[1] F. Dhalluin et al., Proc. of SPIE Vol. 9658, 96580J (2015)

A (mm)

IBM EUV Pellicle Presentations @ SPIE Advanced Lithography

Through-Pellicle Defect Inspection of EUV Masks Using a ArF-based Inspection Tool Paper [9776-54] - WEDNESDAY 6pm

Thermo-mechanical Behavior of EUV Pellicle Under Dynamic Exposure Conditions Paper [9776-74] - THURSDAY 5pm

Thank you for your attention

© 2016 International Business Machines Corporation