

EUV Pellicle TWG, San Jose, CA Feb 21, 2016

EUV Pellicle Experience

Ted Liang
Intel Mask Operations
Santa Clara, CA USA

Main Messages:

- Progress is being made in EUV pellicle development (as in ASML presentation)
- Intel wants to use EUVL for production as soon as possible (as it is ready to support technology development)
- Concerns exist about the extendibility of the current solution with respect to high volume manufacturing (HVM) and throughput
- For HVM, we need a robust and commercial pellicle platform that improves transmission, lifetime, and other key performance parameters

Messages for 2016:

- Good progress has been made in EUV pellicle development in materials, tooling and infrastructure
 - Pellicle exposure with global transport and handling demonstrated
 - Basic EUV pellicle infrastructure and capability exist today for pellicle materials development and quality control
- Pellicle films capable of long lifetime at 250W EUV remain a critical gap in pellicle implementation for HVM
 - Rapid innovation/invention and development are necessary to intercept schedule
 - Great opportunities exist for engagement in pellicle film production and commercialization

Pellicle Film Performances

- Lifetime: commensurate with source power and WPH throughput of NXE in production
 - Transmission >90%
 - Thermal load: equivalent to 250W
 - Tens of thousands of wafers
- Uniformity: T < 0.2%
- Defects in and on the film
 - Particle inspection tools exist today to support process development
 - Development of mechanically robust pellicle films might allow particle blow-off
 - Methods for removal of fall-on particles on thin film membranes desired

Status of Pellicle Integration

Significant progress in multiple fronts has been made

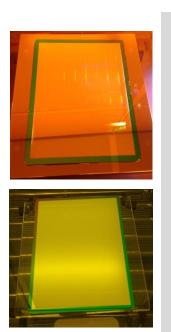
Components	Status @1 st Pellicle TWG (Oct. 2015)	Status @2 nd pellicle TWG (Feb. 2016)
Pellicle film	40W film: single NXE imaging test125W film: feasibility demonstrated*	 40W film: multiple NXE imaging tests; lifetime exceeding expectations 125W film: full sizeprototyped
Mounting	Mock-up mounting with test frameTool set designed	 Reticles pelliclized with detachable, HVM-compatible frame/studs Rev 0 tool sets in use
Metrology/tools	Limited to lab tools at pellicle supplier	 Full pellicle EUV transmission measured; tools exist Pellicle particle inspected; tool exists
Shipping & handling	Basic flow/procedure tested	 Fully pelliclized reticles shipped across continents PODs and process flow appeared healthy
Integration tests	 Limited test with mock-up assembly None on fully assembled HVM- compatible pellicles 	 Exposure >200 wafers on Intel NXE scanner with full-field pelliclized reticles Initial printability results validated ASML frame design

^{*} Carmen Zoldesi/ASML, EMLC June 2015

Focus Areas to Enable EUV Pellicle for HVM

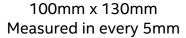
Key components	Current status	Remaining challenges
Pellicle film	Full-size film demonstrated for thermal load at 125W	Transmission >90%Scale up to high-yield production
Mounting	 Tool set designed & prototyped* 	Particle-free mounting process
Film inspection & Metrology	Measurement and tool demonstrated	Integration into process flow
Mask pattern inspection	Need for actinic pattern mask inspection thru-pellicle defined	APMI is not a show-stopperTimely tool development needed

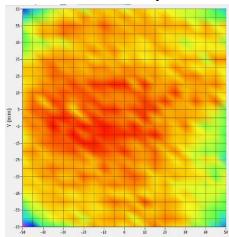
Show-stopper
C&F/prototyped, not commercialized
Prototyped, production path clear
Ready for implementation


^{*} Dan Smith/ASML, 1st Pellicle TWG, Oct 2016

EUV Pellicle Metrology Infrastructure

 Basic tool and capability exist today to support pellicle materials development and quality control


Pellicle film inspection


Inspections demonstrated on multiple pellicles mounted on reticles

Uniformity measurements

- Tool is available for accurate and precise transmission uniformity measurement
- Demonstrated measurements of full-size pellicle @13.50± 0.03nm

Courtesy of EUV Tech

Summary

- EUV pellicle technology and process flow have been demonstrated with wafer printing on NXE scanner with standard EUV mask and exposure flows
 - Pellicle exposure with global transport and handling demonstrated
 - 40W prototype pellicle lifetime >200 wafers demonstrated
 - Initial results indicate only small fraction of particles on pellicle are killer defects for wafer
- <u>EUV pellicle infrastructure</u> and capability exist today for pellicle materials development and quality control
 - Pellicle film inspection and metrology
 - Pellicle mounting tools
- Availability of <u>quality pellicle films is the highest risk</u> to timely EUV pellicle implementation
 - There are opportunities for industry engagement to develop pellicle films to meet HVM requirements
- Inspection of pelliclized reticles is needed to ensure predictable yield. APMI is not a show-stopper, but without it yield and cost may be an issue.

Dr. Britt Turkot/Intel: Keynote Session 9776-1 'EUV Progress Toward HVM Readiness' Monday 11:00am

Thank you for your attention!

