ASML

ASML NXE Pellicle progress update

Dan Smith

2016 EUV Mask Pellicle TWG San Jose CA 21 Feb 2016

Contents

- Introduction: a look back at 2015
- NXE Pellicle update
- Pellicle film development
- NXE Scanner readiness
- Summary

NXE pellicle development

NXE pellicle: from concept to reality

February 2015

NXE pellicle concept

NXE pellicle demonstration model

Current design

Studs (interface to reticle)

Public Slide 3 21-Feb-16

NXE Pellicles are being mounted on reticles and exposed ASML

21-Feb-16

Public Slide 5 21-Feb-16

NXE pellicle update

NXE pellicle: from concept to reality Mount-demount principle without any sliding motion

Public Slide 6 25-02-2016

NXE pellicle: from concept to reality

ASML

Public Slide 7 25-02-2016

NXE pellicle: from concept to reality

Close proximity mount to limit reticle deformation and allow venting

Public Slide 8 25-02-2016

NXE pellicle tooling to support pellicle use in mask shops **ASML** available 2nd half of 2016

Three tools developed:

- 1. Mount studs
- 2. Mount, demount remount pellicle (→)
- 3. Remove studs

Key features:

- Optimized design for cleanliness
- No manual reticle or pellicle handling
- Mount-demount principle without any sliding motion.

NXE pellicle: from concept to reality

Removeable NXE pellicle allows for patterned mask inspection

Public Slide 10 25-02-2016

- Studs can be removed for reticle cleaning
- Alternatively, localized reticle cleaning could be done with the studs on

ASML

Public

Slide 11 21-Feb-16

Pellicle Film Development

Pellicle film must simultaneously fulfill all key requirements Polycrystalline silicon based films meet the key requirements

ASML

high

transmission

Public Slide 12 21-Feb-16

Pellicle robustness

Scanner (imaging) performance

Continuous improvement plan for pellicle films

Public Slide 13 21-Feb-16

		Target specifications			
	Product Phase	Transmission 1	Transmission non-uniformity ²	Power capability	
Pellicle film generations	Prototype	>80%	1%	>40W	
	Pilot	>80%	1%	>125W	
	Product	88%	0.4%	250W	
	Future	≥90%	0.4%	>250W	

¹ Single pass transmission at 6 deg angle of incidence

² Half range; single pass

Pilot film with increased power capability

A	5	V		L
		Pι	ıbl	ic

Slide 14 21-Feb-16

		Target specifications			
	Product Phase	Transmission 1	Transmission non-uniformity ²	Power capability	
licle film nerations	Prototype	>80%	1%	>40W	
	Pilot	>80%	1%	>125W	
	Product	88%	0.4%	250W	
	Future	≥90%	0.4%	>250W	

Pell

gen

Product film with new capping materials

ASML

Public Slide 15 21-Feb-16

		Target specifications			
	Product Phase	Transmission	Transmission non-uniformity	Power capability	
Pellicle film generations	Prototype	>80%	1%	>40W	
	Pilot	>80%	1%	>125W	
	Product	88%	0.4%	250W	
	Future	≥90%	0.4%	>250W	

¹ Various materials are being characterized

Research activities

		Target specifications			
	Product Phase	Transmission	Transmission non-uniformity	Power capability	
Pellicle film generations	Prototype	>80%	1%	>40W	
	Pilot	>80%	1%	>125W	
	Product	88%	0.4%	250W	
	Future	≥90%	0.4%	>250W	

In parallel, ASML Research investigates pellicle robustness, primarily thermal resistance based upon:

- Graphene/carbon based membranes (96% transmission achieved on carbon based films)
- New multilayer structures
- High temperature ceramics as capping and base material

Public

Slide 17 21-Feb-16

NXE Scanner readiness

NXE scanner readiness for robust operation with pellicle **ASML** Public Prevention Slide 18 Detection 21-Feb-16 **Optimized scanner flow** Reticle stage: detection of pellicle Recovery configuration presence between exposures Load lock: detection of pellicle presence **ASML Optimized EUV source** operation modes Load lock: detection of pellicle modified EUV pod Protocol established and tested in preparation for any pellicle failure event

200 wafers exposed using reticle with 40W pellicle

Collaborative effort between Intel and ASML

200 wafers exposed with NXE Pellicle

- NO RETICLE ADDERS OBSERVED IN WAFER PRINTS
- Particles on pellicle do not appear to migrate to reticle surface
- ASML pellicle frame design is mitigating adder rate
 - defectivity assessment continuing

EUV defectivity reticle shipped

- Global transport
- Multiple location handling

Exposure testing will continue to 1000+ wafers with NXE Pellicle

- NXE Pellicle has moved from concept to realization phase
- Mask shop tooling to support NXE Pellicle in mask shop flow is defined. Development is driven to achieve defect free mounting and demounting
- Pellicle film roadmap established with plan to support higher EUV powers and improve imaging performance
- NXE scanners can be adapted with multiple new features for robust NXE Pellicle operation.

ASML