

EUV Pellicle Development via Accelerated Neutral Atom Beam (ANAB) Processing of Ultra-thin Membranes

Sean Kirkpatrick

skirkpatrick@exogenesis.us

October 4, 2015

Development Road Map

Norcada membrane fabrication

Exogenesis ANAB Processing

EUV Testing and Evaluation

Accelerated Neutral Atom Beam Technology (ANAB)

- Unique Accelerated Particle Beam
- Nanoscale Surface Modification
- High Intensity Flux
- Low Energy Particles (10-100+ eV)
- Electrically Neutral
- Surface Penetration ≤ 3 nm

Norcada Membrane Technology

- Norcada is a MEMS and nanotechnology manufacturer in Edmonton, Canada
- Norcada has 'state of the art' manufacturing cleanroom facilities.
- Norcada offers ultrathin membranes for a variety of applications in industrial and scientific fields:
 - Poly and single crystal Silicon membranes
 - Silicon Nitride membranes
 - Metal oxide and nitride membranes
 - Polymeric membranes
 - Multilayer membranes with semiconductor materials and polymeric layers
 - Thin film semi-holey or holey features
 - Dual thickness membranes
 - Free standing carbon membranes

Exogenesis ANAB

- Exogenesis is a nanotechnology company in Billerica, MA USA.
- Exogenesis developed ANAB for surface modifications including:
 - Nanoscale smoothing for reduced EUV scatter
 - Controlled thinning for increased transparency
 - Doping for improved high temperature performance
 - Cleaning / surface preparation / coating interfaces
 - Uniformity correction for production / scaling
- Why is ANAB suited to processing of fragile pellicle materials?
 - ANAB requires no target neutralization
 - ANAB does not apply mechanical forces during processing
 - ANAB is a 'dry' process
 - ANAB is limited to < 3nm process depth NANOSCALE!</p>

Semiconductor Fabrication Technologies Progression Toward Nano-depth Processing

EUV %T Increased By ANAB Modification of Silicon and Polysilicon Membranes

Test Group	Sample ID	Part Number	Description		Quantity	Transmission @13.5 nm
1	ALP320140908A	SQ7300C	3mm X 3mm single crystal silicon membrane approx. 100nm thick	Control	1	82.2%
			silicon frame = 7.5 X 7.5mm			
1	ALP320140908B	SQ7300C	3mm X 3mm single crystal silicon membrane approx. 100nm thick	ANAB	1	90.5%
			silicon frame = 7.5 X 7.5mm	Treated		

Single crystal silicon membrane thinned from 100nm to 25nm %T at 13.5nm increased from 82.2% to 90.5%

Test Group	Sample ID	Part Number	Description		Quantity	Transmission @13.5 nm
2	ALP320140908C	PSM5200A	2mm X 2mm polysilicon membrane approx. 50nm thick	Control	1	90.9%
			silicon frame = 5.0 X 5.0mm			
2	ALP320140908D	PSM5200A	2mm X 2mm polysilicon membrane approx. 50nm thick	ANAB	1	94.4%
			silicon frame = 5.0 X 5.0mm	Treated		

Norcada Polycrystalline silicon membrane thinned from 50nm to 25nm %T at 13.5nm increased from 90.9% to 94.4%

^{*}Presented at TWG San Jose 2/28/2015

ANAB Enhanced Membranes

Norcada Silicon Nitride Membrane Modified With ANAB

Pellicle Development Timeline

- Exogenesis and Norcada have demonstrated 'proof of performance' in multiple studies.
- Full capabilities to develop and produce final product.
- Focused development not yet been initiated.
- Focused development is contingent on funding.
- Scaling to size will require 12-18 months with funding.
- If development begins before end of 2015, production of actual pellicles would be feasible for mid 2017.

Thank You!