Entegris EUV Carrier Update

IEUVI Mask TWG - Oct 6, 2013

Poshin Lee – Entegris, Inc.

- Development of EUV pod
- Improved Design of 1007 EUV Pod
- EUV Pod for Reticle with Pellicle
- Summary

Entegris EUV Carrier Development Milestones

EUV Pod update Oct_2013 | 3

Improvements learned from *Experience – New 1007 Design*

New RFID holder and optional locations with mapping to verify performance

Improved Strength

1007 Design - New latch alignment improves latching precision

- Loadport must fully seat door into dome
 - Compressing gasket
 - Actuating reticle retainers
- Standard E19.4 loadport may NOT seat door fully into dome
- Causes latch arms to contact dome pocket
 - Creates increased particle generation
 - Causes increase in latch torque beyond SEMI specification
 - Potential damage to outer pod and latch arms

- Loadport returns door to correct position
- Latches are at optimal position to minimize particle generation between latch arm and latch pocket
- Torque required to actuate door remains within specification

1007 Design - KC Pin material to improve wear & friction properties

KC Pin shown assembled

into door

ark

EUV Pod update Oct_2013 | 6

Third Generation Inner Pod Flexure Design in EUV 1007

Builds upon flexure strengths while eliminated weaknesses

1007 Design - Eliminated independent flanges and (8) screws

Independent flange 1005

Attachment screws - 1005

Integrated flange - 1007

External flexure mounting - 1007

Inner Pod Improvements in 1007

- New Electroless Nickel plating to improve resistance to staining in cleaning tool
- New base plate manufacturing process to improve surface finish quality
- Move flexure to the outside of cover from the inside
- Integrate handling flanges into the cover to eliminate screws and pockets for particles
- New cover to base plate alignment feature (see images) to reduce metal on metal wear potential.

Polymer tipped metal pin provides strength and dimensional accuracy while the polymer provides outstanding wear properties. Same concept is used on the Outer carrier KC pins. This is an example of second generation product improvements

Improved secondary packaging materials

Packaging system remains the same, material properties provide the improved reticle protection

ISTA 3A Drop Test particle results on EUV 1007 in second generation packaging

ASML	Front side		Back side	Remark		
Bins	QAi (≥85nm)	QAo(≥200nm)) QA(≥ 3.0µm)			
Mask 1	1~2	1~2	0	Front: Possibly particle moving		
Mask 3	2	2	0	Back: 1 detect out of 3 scans		
Mask 4	0	0	0	Front: 1 detect out of 3 scans		
		Front side				
All	From	t side	Back side	Remark		
All Particle	s QAi (≥85nm)	n t side QAo(≥85n m)	Back side QA(≥ 85nm)	Remark		
All Particle Mask 1	s From QAi (≥85nm) 1~2	at side QAo(≥85n m) 1~2	Back side QA(≥ 85nm) 0	Remark Front: Possibly particle moving		
All Particle Mask 1 Mask 3	s From QAi (≥85nm) 1~2 2	QAo(≥85n m) 1~2 2	Back side QA(≥ 85nm) 0 0 0	Remark Front: Possibly particle moving Back: 1 detect out of 3 scans		

 Entegris has the capability to rapidly test and improve with in house resources. The above is one example where a new generation of secondary packaging was developed to improve shipping performance.

Entegris

1007 Update - ASML EPS specification and approval for use test

Er	egris 1007 EUV-pod report	EUV-pod report card for standard tests			
	Test	Entegris EUV-1007A-A120			
	Inspection Tests	Inspection Tests			
	Mechanical Measurements	Pass (Supplier)			
	Visual inspection	Pass (Supplier)			
	Functional Tests	Functional Tests			
	Sensor tests including target reflectivity test	Pass			
	Full system cycle test	Pass			
	Outgas	Outgas			
	EIP outgas test	Pass			
	Particle adder measurements	Particle adder measurements			
	RH transfer path test	Pass			
	In-system habitat test (venting)	Pass			

New Pod Design for Reticle with Pellicle Pellicle Pocket Baseplate Prototype

Pellicle Pocket – no diffusion barrier (small gap between baseplate and reticle)

Removed pockets to maintain weight and center of gravity

- EUV-1007 has been qualified and released
- EUV-1010 product is under development
- Entegris continuing investment into EUV and improve our product

