

EUV resist outgassing activity at Selete

Semiconductor Leading Edge Technologies, Inc.

Toshiro Itani

Evaluation tools and methods

Present activities and results

Summary

Future Plans

Acknowledgement

Pressure rise method

QMS analysis

Resist outgassing 'RATE' [unit : molecules·cm⁻²·s⁻¹]

Maximum rate during exposure \rightarrow indicator for exposure tool management

 $J = \frac{\Delta p S_e}{RTA} N_A$

(evaluated EUV intensity)

$$J_{400} = \frac{\Delta p S_e}{RTA} N_A \frac{400}{I}$$

(400mW·cm⁻² assumed)

Resist outgassing 'AMOUNT' [unit : molecules·cm⁻²]

AMOUNT dependence on exposure dose \rightarrow indicator for resist improvement

Sampling time

Δp : pressure rise	N_A : avogadro's number
S_e : effective pumping speed	I : EUV intensity
R : Gas constant	-
T : temperature	(subscript)
A : area of exposure	i : time
-	D : established dose

Rate and amount calculations based on the pressure variations.

Evaluation tool 2

GC-MS method

Methods	Description	Evaluation time	Selete
Pressure rise	 Simple and quick for quantitative analysis. Component identification not possible. 	2 hours/sample	0
GC-MS	 Component identification possible. CO₂ cannot be detected. Low throughput. 	1 day/sample	0
QMS	 In-situ qualitative analysis possible Quantitative analysis not possible. Qualitative analysis inaccuracy due to fragmentation effect. 	2 hours/sample	0
Witness mirror	 Contamination level directly observed. Low throughput and high cost. 	A few days/sample	Δ

Pressure rise, GC-MS and QMS methods are applied for resist outgassing evaluations.

Evaluation tools and methods

Present activities and results

Summary

Future Plans

Acknowledgement

Quantification 1

Pressure rise method

for Quantification by **RATE**

More than 120 samples analyzed for resist outgassing rate.

Quantification 2

Pressure rise method

for Quantification by **AMOUNT**

More than 120 samples analyzed for resist outgassing amount.

- GC-MS effective for component analysis. CO₂ cannot be detected.

- Fragmentation in QMS cause large difference in detected spectra.

Mechanism analysis

Dependence of component peak positions observed. CO₂ (m/z=44) dependent, C₆H₅ (m/z=77) not dependent.

Quantification (Quick Screening)	Pressure rise method Screening of resist samples received prior to exposure.	
Component analysis	GC-MS method Improvement of resist samples based on new resist components.	
Mechanism analysis	QMS analysisGC-MS methodBasic study to improve tools and control methods.	

Quantification (Quick Screening) Resist outgassing rate and amount evaluations were performed for more than120 samples using the pressure rise method, prior to exposure.

Component analysis GC-MS effective and accurate in the analysis of resist outgassing components. (CO₂ cannot be detected).

 Mechanism analysis
 QMS is highly recommended for component reaction mechanism analysis during exposure.
 GC-MS method is also applied to provide more accurate component identification for mechanism analysis.

Selete applies resist outgassing methods depending on the analysis objectives.

- Further improvement of analysis result accuracy.
- Discussion with exposure tool makers (Nikon and Canon) underway.
- Establish specific resist outgassing limits for pre-production level.
- Collaboration with other research consortiums, tool and material suppliers, universities and research groups.

Acknowledgement

- A part of this work is supported by New Energy and Industrial Technology Development Organization (NEDO).
- Selete member companies (EUV Lithomask program).