

What outgasses from photoresist?

From Kim Dean, "How much is too much"

Compound	Frequency	Comments	
Benzene	72	PAG by-product	
2-Methyl-1-propene (Isobutene)	41	Polymer protection product (ester)	
Ethyl adamantane	14	Polymer protection product	
Tert-butyl-benzene	13	PAG by-product	
Acetaldehyde	10	Polymer protection product (acetal)	
Alpha-methylstyrene	9	PAG by-product?	
Cyclohexanone	6	Polymer protection product	
2-Methyl-2-propanol	6	Polymer protection product	

Plus CO, CO₂ and some sulfur compounds

Chosen species for injection and exposure of mirrors to measure contamination

Contaminants	Formula	Structure	Molecular weight (amu)	Boiling point (°C)
Benzene	C_6H_6		78	80.1
Tert-butanol	$C_4H_{10}O$	ОН	74	82
Diphenyl Sulfide	$C_{12}H_{10}S$		186	296.2

Intended to represent known or similar structures that may outgas from resists

Reflectivity results due to contamination from these species

Chamber Conditions	Chamber Pressure (Torr)	Exposure time (hours)	Total Dose (J/cm²)	Number of pulses (millions)	Reflectivity drop (∆R/R%)
Clean (background)	2.5 x 10 ⁻⁸	8	29	36	0.35
Benzene	1 x 10 ⁻⁶	8	29	36	0.35
Tert-Butanol	3 x 10 ⁻⁶	8	11.5	36	-0.09
Diphenyl Sulfide	1 x 10 ⁻⁶	4.2	15	19	0.1
Diphenyl Sulfide	1 x 10 ⁻⁶	3.6	13	16	-0.23
Diphenyl Sulfide	1 x 10 ⁻⁶	2.9	42	13	0.1

No significant reflectivity loss for these species at these pressures and doses

Comparison to outgassing from a full wafer

- Benzene is one of the common resist outgassing components
- From our outgassing measurements, a typical resist outgasses 5 x 10¹³ molecules/cm² of benzene
- In our 8 hour, 36 million pulse, 29 J/cm² exposure, we require 2.8 x 10²⁰ molecules of benzene in a chamber with a pumping speed of 300 liters/second to keep the pressure at 1 x 10⁻⁶ Torr
- That is the equivalent amount of benzene outgassed by approximately <u>8000</u> wafers of typical resist
 - And we didn't see measurable reflectivity changes in this exposure
- However, it is difficult to extrapolate to much higher power and longer exposures such as in future high volume EUV tools

