Intel update contamination of EUV MET mirrors

Manish Chandhok Intel Corporation

3/1/2007

Summary

- Intel replaced mirrors twice over the last year in the illumination optics of the MET
- Indicator is low wafer plane power owing to mirror contamination
 - > 100 shots/mJ
 - Imaging performance can degrade due to system vibration and/or drift
 - Throughput slows to a crawl
- N1, normal incidence mirror showed reduction in average reflectivity from 64% to 41%
- G1 average reflectance decreased from 78% to 50% whereas G2 average reflectance dropped from 66% to 10%
- Major source of contamination is carbon

MET Schematic

N1 mirror results after 110 million shots

 Reflectivity dropped from 64% to minimum 32%, 41% average reflectance

C:O:Si ~70%:20%:10%.

G1, G2 replaced after 174 million shots

- Degradation of G1 and G2 appear similar, but impact was more from G2 due larger incidence angles
- C:O:Si ratios ~ 85%:10%:5%

Estimating the thickness by modeling

C thickness estimated at 30 nm

Impact of thickness, density, and roughness on reflectivity

Multi-dimensional fit needed for G1 and G2 independently

Phenomenological model

Outgassing components -pump oils, lubricants, sealants

Step 1: Hydrocarbons adsorb onto mirror surface

 $C_xH_v - C_xH_v - C_xH_v - C_xH_v$

Step 2:
Hydrocarbons are
broken down into C
by the secondary
electrons from EUV
radiation of the
surface

 $C_xH_v + Sec. e^- \rightarrow C + H^{\uparrow}$

- After ~0.5 nm C growth, surface appears as C capped*
- Carbon growth rates have been found to be independent of the ambient pressure, and inversely proportional to the temperature of the substrate*
 - Rate limiting factor is not arrival rate of adsorbed [HC]s

