

Contamination Control Program at EUVA

IEUVI Contamination and Optics Lifetime TWG
November 10, 2005

Yasuaki Fukuda EUVA Tool Laboratory

Purpose

- 1. To suppress reflectivity loss due to oxidation
- 2. To suppress carbon deposition
- 3. To establish cleaning method of carbon

About my talk

- This talk deals with experiments with water, irradiation flux, and accumulated dose.
- Ru oxidation and effects on hydrocarbon is given by Dr. Gomei in this session.
- And relevant papers are presented by
 - Kakutani (3-CC-15, Oral) and
 - Matsunari <= Aoki (3-CC-23, Oral) in the Symposium.

Experimental setup

Reflectance degradation by water and oxygen

>H2O is more effective to reflectance degradation.

<H₂O is absorbed to the surface more easily.

>We focus on the oxidation by EUV+H₂O.

Reflectance degradation dependence on light intensity and dose

> Reflectance degradations depend on light intensity and light dose linearly.

Reflectance degradation dependence on water partial pressure

- > Reflectance degradations depend on H2O pressure logarithmically.
- > Prediction of reflectance degradations/Lifetime estimation
 R/R₀=1-(b*ln(P)+c)It, R:reflectance/%, P:H₂O pressure/Pa, It:light dose/(J/mm²)

b:1.53e-5,c=2.25e-4 in this Ru-Cap sample.

Oxidation speed dependence on water partial pressure, light dose, and intensity

- > Ru and Si in Ru-Cap are oxidized by EUV irradiation.
- > Oxidation speeds depend on H2O partial pressure and light dose.

Summary

- ► Oxidation speed and reflectance degradation dependence on light intensity, H₂O partial pressure and light dose are studied.
- ► Prediction of reflectance degradation may give a clue of lifetime of optics.