

IEUVI Optics Contamination and Lifetime Technical Working Group

San Diego 10 Nov 2005

Anthony Keen, Rob Grant, George Kyriakou, David Davis and Richard Lambert

Aim

- Goal is essentially to understand the adsorption characteristics of various types of hydrocarbon species on multilayer mirror optics under under 13.5nm (or equivalent) radiation.
 - e⁻ gun
 - Synchrotron radiation
 - Pulsed photon source

BOC Edwards Plan of Work

- Investigations to include e⁻ gun stimulation at Cambridge University (ongoing), synchrotron radiation studies at Elettra syncrotrone, Trieste (ongoing) and pulsed photon source (TBD).
- Initial investigations focussing on fundamental surface science studies of single crystal Ru(0001) and polycrystalline Ru foil will then move to capped MLM

Results of Electron Stimulation

- Comparison of the profile of secondary electrons between 13.5 nm EUV photons and low energy electron beam
- Electron gun stimulation at 0.2mW/mm² of toluene at (true) 1x10⁻⁹ Torr partial pressure results in 1nm carbon growth on Ru(0001) in approximately 80 hrs
- Characterisation of primary e⁻ beam energy effect on carbon growth characteristic

Recent Synchrotron Studies

- Comparison between clean Ru(0001) single crystal (showing SCLS) and first scan of ML1 sample after installing into vacuum
- Angle resolved XPS measurements have also been performed on Ru(0001) and fresh ML1 sample to compare secondary electron profiles – further detailed analysis ongoing.

