#### Mar. 2, 2005, 17:50 - 21:45 Fairmont Hotel / Belvedere Room, San Jose, USA

#### **IEUVI Contamination & Optics TWG meeting**

## **ASET Update**

#### ASET EUV Process Technology Laboratory Iwao Nishiyama



## **EUVL Development Plan in Japan**



EUV Process Technology

## **Optics Contamination Workshop in Japan**

- 1. May 24, 2004:
  - High energy particle observation from LPP (EUVA)
  - Modeling for high energy ion generation from LPP (Leading Pj)
  - Contamination study in New SUBARU (HIT)
- 2. Oct 15, 2004
  - > Modeling of energy distribution for ions generated by LPP (Leading Pj)
  - Erosion mitigation method in LPP (EUVA)
  - Debris mitigation for DPP (EUVA)
  - Surface model for contamination growth on EUVL mirror (EUVA)
- 3. Feb. 10, 2005
  - Status of EUVA contamination study (EUVA)
  - EUV intensity dependence and water pressure dependence on contamination growth (HIT)
  - Atomic Hydrogen Cleaning (ASET)
  - Modeling for high energy ion and neutral atoms generation from LPP (LP)



# Contamination/Optics lifetime testing facilities



## Outgas Evaluation Apparatus at SBL-2 of Super ALIS





#### **Experiment of outgas evaluation**

#### Method:

- Direct measurement of pressure rise by outgassing
- Evacuation speed is defined by orifice conductance

Estimation of pressure rise
Typical Outgas speed

= 1x10<sup>12</sup> molecules s<sup>-1</sup>
Conductance of orifice(1cm<sup>2</sup>)
=10 l/s

Pressure rise

= 3 x 10<sup>-7</sup> Pa





## Cleaning of Carbon Contamination by Hydrogen Atom with Cat-Cleaning Tool

This work was performed under the collaboration with Japan Advanced Institute of Science And Technology (JAIST) and Kyushu Institute of Technology.



## Atomic Hydrogen Cleaning of Carbon Contamination (1)

## Before cleaning

#### Thickness: 5.6 nm

#### After cleaning Thickness: negligible



#### Carbon contamination has been removed almost completely. The cleaning rate was >0.6 nm/min

